Types
posteriors.types.InitFn
𝞡
Bases: Protocol
Source code in posteriors/types.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | |
__call__(params)
𝞡
Initiate a posteriors state with unified API:
state = init(params)
where params is a PyTree of parameters. The produced state is a
tensordict.TensorClass containing the required information for the
posteriors iterative algorithm defined by the init and update functions.
Note that this represents the init function as stored in a Transform
returned by an algorithm's build function, the internal init function in
the algorithm module can and likely will have additional arguments.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
params
|
TensorTree
|
PyTree containing initial value of parameters. |
required |
Returns:
| Type | Description |
|---|---|
TensorClass
|
The initial state, a |
TensorClass
|
attributes but possibly other attributes too. |
Source code in posteriors/types.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | |
posteriors.types.UpdateFn
𝞡
Bases: Protocol
Source code in posteriors/types.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | |
__call__(state, batch, inplace=False)
𝞡
Transform a posteriors state with unified API:
state, aux = update(state, batch, inplace=False)
where state is a tensordict.TensorClass containing the required information
for the posteriors iterative algorithm defined by the init and update
functions. aux is an arbitrary info object returned by the
log_posterior or log_likelihood function.
Note that this represents the update function as stored in a Transform
returned by an algorithm's build function, the internal update function in
the algorithm module can and likely will have additional arguments.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state
|
TensorClass
|
The |
required |
batch
|
Any
|
The data batch. |
required |
inplace
|
bool
|
Whether to modify state using inplace operations. Defaults to True. |
False
|
Returns:
| Type | Description |
|---|---|
tuple[TensorClass, TensorTree]
|
Tuple of |
Source code in posteriors/types.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | |
posteriors.types.Transform
𝞡
Bases: NamedTuple
A transform contains init and update functions defining an iterative
algorithm.
Within the Transform all algorithm specific arguments are predefined, so that the
init and update functions have a unified API:
state = transform.init(params)
state, aux = transform.update(state, batch, inplace=False)
Note that this represents the Transform function is returned by an algorithm's
build function, the internal init and update functions in the
algorithm module can and likely will have additional arguments.
Attributes:
| Name | Type | Description |
|---|---|---|
init |
InitFn
|
The init function. |
update |
UpdateFn
|
The update function. |
Source code in posteriors/types.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | |